甚嚣尘上的“AI威胁论”卷土重来?科学家来解惑(2)
扫一扫
分享文章到微信
扫一扫
关注99科技网微信公众号
AlphaGo的秘密武器:两大核心要素实现极简算法
其实AlphaGo Zero里面并没有新的巨大的理论突破,它使用的白板学习,早在之前的围棋系统Creazy Stone中就有用过。最主要还是用到了孙剑博士发明的ResNet技术, 谈到该技术时,他讲到: ”AlphaGo Zero的搜索过程简化了很多,例如把以前系统中的两个网络合并成一个网络、将深度残差网络的输入做最简化。谈到本次AlphaGo Zero在技术特点,他认为是“把19x19棋局图像直接送给神经网络,让神经网络看着棋盘做决策,这个非常简洁。”
AI科技评论认为DeepMind的这一成果的启发意义大于借鉴意义。与其想着把算法照搬过来,不如朝AlphaGo Zero启发的方向探索。在与孙剑博士在采访交流中,他表示本次AlphaGo Zero的提升主要有两个核心要素,一个是启发式搜索,一个是深度残差神经网络,而这两个又非常完美的实现了结合。其中启发式搜索的思想非常朴素,是个针对问题设计的一个高级定制版蒙特卡洛数搜索算法。另外一个核心要素是深度残差神经网络,让简单的搜索算法极大的提升了效率。
深度残差神经网络在2015年由孙剑在微软领导的视觉团队老师率先提出,并在当年在ImageNet以及COCO两大学术竞赛中包揽五项冠军,其中最重要的部分就是实现了突破性的152层的网络深度,从而让一些非常复杂的函数做映射时效率与有效性得到极大的提升。强大的网络使得AlphaGo Zero已经可以有能力学习把每一子下在那里的概率和对整个棋局的判断算的非常准确。
开放与互通是AI通往未来之路的不二法则
今年,中国发布了人工智能战略规划,起码从国家层面上是认可AI能给社会带来巨大进步。在讲到AI的未来发展中,孙剑博士强调了开放与互通两个词。他讲到他现在在旷视研究院每天第一件事情就是去网上开放的论文平台ArXiv看是否有新的、有意思的论文、思想发出来。
最后雷锋网问道,ResNet被应用到AlphaGo Zero上,您有什么感受?孙剑博士表示:“这次应用在AlphaGo Zero中的ResNet残差神经网络,曾获得了CVPR 2016的最佳论文奖,我也非常高兴这个技术可以应用在AlphaGo Zero系统中,而这个应用过程其实并不需要我们直接进行接触而是一种研究成果的交流,人工智能研究最前沿的开源与开放,才能让我们在追求更优解的过程中有很多参考与理论支撑,可以极大的提升新技术产生的周期。”
孙剑博士还介绍到,旷视研究院今后还会不断分享、开放研究成果。今年7月份,旷视研究院在ArXiv公开了一篇ShuffleNet的论文,是一种可以运行在很多移动端上非常低能耗的神经网络算法,可以说是专为移动端而生的算法。发布至今不光有硬件产品、手机解锁产品使用,同时也有很多同行在使用。
雷锋网AI科技评论小结:AlphaGo Zero虽没有新的突破性的技术,但这丝毫不影响它的伟大,它能够完美集成已有的技术,给研究者带来新的启发,本身已具有里程碑式的意义。他的局限在于目前只能运用到特定领域,不过,换个角度来看,这对于人类来说未必不是好事儿。总之,AI 还有很长的路要走,还需要更多像孙剑博士这样的科学家们,不断借助创新而实现更多的创新,不断借助伟大的思想创造伟大的场景。只有不断的开放最好的认知,才能让AI不断成长,让更多更强的AlphaGo Zero产生。
投稿邮箱:jiujiukejiwang@163.com 详情访问99科技网:http://www.fun99.cn